/*-------------------------------------------------------------------- noise function over R3 - implemented by a pseudorandom tricubic spline EXCERPTED FROM SIGGRAPH 92, COURSE 23 PROCEDURAL MODELING Ken Perlin New York University ----------------------------------------------------------------------*/ #include "noise.h" #include #define B 256 static int p[B + B + 2]; static float g[B + B + 2][3]; #define DOT(a,b) (a[0] * b[0] + a[1] * b[1] + a[2] * b[2]) #define setup(i,b0,b1,r0,r1) \ t = vec[i] + 10000.; \ b0 = ((int)t) & (B-1); \ b1 = (b0+1) & (B-1); \ r0 = t - (int)t; \ r1 = r0 - 1.; void Noise::init() { /*long random();*/ int i, j, k; float v[3], s; /* Create an array of random gradient vectors uniformly on the unit sphere */ /*srandom(1);*/ srand(1); for (i = 0 ; i < B ; i++) { do { /* Choose uniformly in a cube */ for (j=0 ; j<3 ; j++) v[j] = (float)((rand() % (B + B)) - B) / B; s = DOT(v,v); } while (s > 1.0); /* If not in sphere try again */ s = sqrt(s); for (j = 0 ; j < 3 ; j++) /* Else normalize */ g[i][j] = v[j] / s; } /* Create a pseudorandom permutation of [1..B] */ for (i = 0 ; i < B ; i++) p[i] = i; for (i = B ; i > 0 ; i -= 2) { k = p[i]; p[i] = p[j = rand() % B]; p[j] = k; } /* Extend g and p arrays to allow for faster indexing */ for (i = 0 ; i < B + 2 ; i++) { p[B + i] = p[i]; for (j = 0 ; j < 3 ; j++) g[B + i][j] = g[i][j]; } } float Noise::turbulence(float point[3], float lofreq, float hifreq) { float freq, t, p[3]; p[0] = point[0] + 123.456; p[1] = point[1]; p[2] = point[2]; t = 0; for (freq = lofreq ; freq < hifreq ; freq *= 2.) { t += fabs(noise3(p)) / freq; p[0] *= 2.; p[1] *= 2.; p[2] *= 2.; } return t - 0.3; /* readjust to make mean value = 0.0 */ } float Noise::noise3(float vec[3]) { int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11; float rx0, rx1, ry0, ry1, rz0, rz1, *q, sx, sy, sz, a, b, c, d, t, u, v; register int i, j; setup(0, bx0,bx1, rx0,rx1); setup(1, by0,by1, ry0,ry1); setup(2, bz0,bz1, rz0,rz1); i = p[ bx0 ]; j = p[ bx1 ]; b00 = p[ i + by0 ]; b10 = p[ j + by0 ]; b01 = p[ i + by1 ]; b11 = p[ j + by1 ]; #define at(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] ) #define surve(t) ( t * t * (3. - 2. * t) ) #define lerp(t, a, b) ( a + t * (b - a) ) sx = surve(rx0); sy = surve(ry0); sz = surve(rz0); q = g[ b00 + bz0 ] ; u = at(rx0,ry0,rz0); q = g[ b10 + bz0 ] ; v = at(rx1,ry0,rz0); a = lerp(sx, u, v); q = g[ b01 + bz0 ] ; u = at(rx0,ry1,rz0); q = g[ b11 + bz0 ] ; v = at(rx1,ry1,rz0); b = lerp(sx, u, v); c = lerp(sy, a, b); /* interpolate in y at lo x */ q = g[ b00 + bz1 ] ; u = at(rx0,ry0,rz1); q = g[ b10 + bz1 ] ; v = at(rx1,ry0,rz1); a = lerp(sx, u, v); q = g[ b01 + bz1 ] ; u = at(rx0,ry1,rz1); q = g[ b11 + bz1 ] ; v = at(rx1,ry1,rz1); b = lerp(sx, u, v); d = lerp(sy, a, b); /* interpolate in y at hi x */ return 1.5 * lerp(sz, c, d); /* interpolate in z */ }