sources:


website:
more info here


screenshot:
studies/grafik2/Computergrafik-Code3/Aufgabe7/vector.h
download file

  1 //
  2 // Computergraphik II
  3 // Prof. Dr. Juergen Doellner
  4 // Wintersemester 2001/02
  5 //
  6 // Rahmenprogramm zu Aufgabenzettel 3
  7 //
  8
  9 #ifndef _VECTOR_H
 10 #define _VECTOR_H
 11
 12 #include <iostream.h>
 13 #include <math.h>
 14
 15 //- Vector
 16 class Vector {
 17 //. 3D Vector Class.
 18 public:
 19     //- Vector
 20     Vector(double x = 0, double y = 0, double z = 0);
 21
 22     //- operator==, operator!=, operator<
 23     bool operator==(const Vector&) const;
 24     bool operator!=(const Vector&) const;
 25     bool operator<(const Vector&) const;
 26         //. The comparison is based on the lexiographic order.
 27
 28     //- operator[]
 29     double& operator[](int i);
 30     double operator[](int i) const;
 31         //. Indices 0,1, and 2 correspond to the x,y,z coordinates
 32         //. of the vector.
 33         //. CAUTION: For performance reasons, indices are not checked.
 34
 35     //- operator+=, operator-=, operator*=
 36     Vector& operator+=(const Vector&);
 37     Vector& operator-=(const Vector&);
 38     Vector& operator*=(const Vector&);
 39     Vector& operator*=(double);
 40
 41     //- operator+, operator-, operator*, operator/, operator-, operator*
 42     Vector operator+(const Vector&) const;
 43     Vector operator-(const Vector&) const;
 44     Vector operator*(const Vector&) const;
 45     Vector operator/(double) const;
 46     Vector operator-() const;
 47     Vector operator*(double) const;
 48     friend inline Vector operator*(double, const Vector&);
 49
 50     //- normalized, normalize
 51     Vector normalized() const;
 52     bool normalize();
 53         //. `normalized' returns a normalized copy of the vector object.
 54         //. `normalize' normalizes the vector object. If the length
 55         //. of the vector was > 0, it returns 1 for success, otherwise 0.
 56
 57     //- abs, abs2, dotProduct
 58     friend inline double abs(const Vector&);
 59     friend inline double abs2(const Vector&);
 60     friend inline double dotProduct(const Vector&, const Vector&);
 61         //. Vector length and scalar product.
 62
 63     //- makeCWTriangleNormal, makeCCWTriangleNormal
 64     friend inline Vector makeCWTriangleNormal (
 65         const Vector& p0, const Vector& p1, const Vector& p2     )
;
 66     friend inline Vector makeCCWTriangleNormal (
 67         const Vector& p0, const Vector& p1, const Vector& p2     )
;
 68         //. Computes ((p0-p1)*(p1-p2)).normalized, i.e. a vector that is
 69         //. perpendicular the the plane defined by the three vertices.
 70
 71     //- operator<<, operator>>
 72     friend  ostream& operator<<(ostream&, const Vector&);
 73     friend  istream& operator>>(istream&, Vector&);
 74
 75     //- rep
 76     double* rep() const;
 77         //. Direct data access. It is guaranteed that the
 78         //. vector components are stored continuously.
 79    
 80
 81 private:
 82     double v_[3];
 83 };
 84
 85 inline Vector::Vector(double x, double y, double z) {
 86     v_[0] = x; v_[1] = y; v_[2] = z;
 87 }
 88
 89 inline double Vector::operator[](int i) const { return v_[i]; }
 90
 91 inline double& Vector::operator[](int i) { return v_[i]; }
 92
 93 inline bool Vector::operator==(const Vector& u) const {
 94     return(v_[0]==u.v_[0] && v_[1]==u.v_[1] && v_[2]==u.v_[2]);
 95 }
 96
 97 inline bool Vector::operator!=(const Vector& u) const {
 98     return(v_[0]!=u.v_[0] || v_[1]!=u.v_[1] || v_[2]!=u.v_[2]);
 99 }
100
101 inline Vector& Vector::operator+=(const Vector& u) {
102     v_[0] += u.v_[0];
103     v_[1] += u.v_[1];
104     v_[2] += u.v_[2];
105     return *this;
106 }
107
108 inline Vector& Vector::operator-=(const Vector& u) {
109     v_[0] -= u.v_[0];
110     v_[1] -= u.v_[1];
111     v_[2] -= u.v_[2];
112     return *this;
113 }
114
115 inline Vector& Vector::operator*=(double t) {
116     v_[0] *= t;
117     v_[1] *= t;
118     v_[2] *= t;
119     return *this;
120 }
121
122 inline Vector Vector::operator+(const Vector& u) const {
123     return Vector(v_[0]+u.v_[0],v_[1]+u.v_[1],v_[2]+u.v_[2]);
124 }
125
126 inline Vector Vector::operator-(const Vector& u) const {
127     return Vector(v_[0]-u.v_[0],v_[1]-u.v_[1],v_[2]-u.v_[2]);
128 }
129
130 inline Vector Vector::operator*(const Vector& w) const {
131     return Vector(v_[1]*w.v_[2]-v_[2]*w.v_[1],
132                    v_[2]*w.v_[0]-v_[0]*w.v_[2],
133                    v_[0]*w.v_[1]-v_[1]*w.v_[0])
;
134 }
135
136 inline Vector Vector::operator/(double s) const {
137     return Vector(v_[0]/s, v_[1]/s, v_[2]/s);
138 }
139
140 inline Vector Vector::operator-() const {
141     return Vector(-v_[0], -v_[1], -v_[2]);
142 }
143
144 inline Vector Vector::operator*(double f) const {
145     return Vector(v_[0]*f, v_[1]*f, v_[2]*f);
146 }
147
148 inline Vector operator*(double s, const Vector& u) {
149     return Vector(u[0]*s, u[1]*s, u[2]*s);
150 }
151
152 inline double dotProduct(const Vector& u1, const Vector& u2) {
153     return(u1[0]*u2[0] + u1[1]*u2[1] + u1[2]*u2[2]);
154 }
155
156 inline double abs(const Vector& u) { return(sqrt(dotProduct(u,u))); }
157 inline double abs2(const Vector& u) { return dotProduct(u,u); }
158
159 inline Vector makeCWTriangleNormal(const Vector& p0, const Vector& p1, const Vector& p2) {
160     return(((p0 - p1) * (p1 - p2)).normalized());
161 }
162
163 inline Vector makeCCWTriangleNormal(const Vector& p0, const Vector& p1, const Vector& p2) {
164     return(makeCWTriangleNormal(p2, p1, p0));
165 }
166
167 inline double* Vector::rep() const {
168     return (double*)(&(v_[0]));
169 }
170
171 #endif // _VECTOR_H
172
173